If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-368=0
a = 1; b = 5; c = -368;
Δ = b2-4ac
Δ = 52-4·1·(-368)
Δ = 1497
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1497}}{2*1}=\frac{-5-\sqrt{1497}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1497}}{2*1}=\frac{-5+\sqrt{1497}}{2} $
| 3z^2+8z−9=0 | | 3z2+8z−9=0 | | 3(2-x)=-3x+2 | | c+7/10+2=9c/6 | | 27^(x+5)=81 | | 6x+2(x+7(=46 | | 9x–5(x–1)–1=1 | | Y^=-11y | | 80023=8.0023×10^n | | 4x+12+2x=23 | | X-2/x=10/15 | | 50x+100=25x+225 | | 24=-9d(6d+8) | | 6n+7=67 | | 9p^2-9p=0 | | 110x=90x | | 2(10r-7)-2(1=10r)=-r+2r | | 1/2=(6w+8) | | 4x-35+107=180 | | 1.2x-1.2=1x | | 11u=48+5u | | 1/2=96w+8) | | 2x²+x-8=0 | | 9w+18=15w | | x/10-9=19/20 | | x=-2x=11 | | 1/4x=0.25 | | 10+4x(5x4x)=5-(x+8) | | 3x^2+39=18x | | (4x+16)+(10x-10)=180 | | 1=x+(x*1.6180) | | 10k-5k=27 |